An Investigation into the Effective Heat Transfer Coefficient in the Casting of Aluminum in a Green-Sand Mold

نویسندگان

  • Hsien-Chi Sun
  • Long-Sun Chao
چکیده

This study commences by performing an experimental investigation to measure the temperature distribution within a casting system comprising a cylindrical aluminum casting and a green-sand mold. The experimental temperature measurements are then used to compute the effective heat transfer coefficient at the mold/metal interface using four different formulae. In the temperature measurement, a symmetric arrangement of thermocouples is proposed and proven to be feasible, which can reduce the influence of heat-transfer and solidification characteristics in a casting experiment due to the close-spaced thermocouples. As an important role in the calculation of the effective heat transfer coefficient, the metal temperature at the mold/metal interface is calculated using an extrapolation technique and an inverse scheme. A lump capacity method is also utilized to estimate the average values of the effective heat transfer coefficients, which are consistent with those of the previous effective heat transfer coefficients. The numerical results obtained for the temperature curves in the green-sand mold are found to agree well with the experimental profiles. Finally, with the effective heat transfer coefficients obtained above, a finite element simulation is performed using FIDAP software to model the evolution of the temperature distribution within the casting during the solidification process. The predicted solidification time is found to be in reasonable agreement with that observed in the experimental casting process. [doi:10.2320/matertrans.MRA2008364]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A TRANSIENT TWO-DIMENTIONAL INVERSE ESTIMATION OF THE METAL-MOLD HEAT TRANSFER COEFFICIENT DURING SQUEEZE CASTING of AL-4.5WT%CU

In this paper, a transient, two-dimensional and nonlinear inverse heat conduction problem in solidification process is considered. Genetic algorithm is applied for the identification of the interfacial heat transfer coefficients during squeeze casting of commercial aluminum alloy (Al-4.5wt%Cu) by assuming a priori information regarding the functional form of the unknown heat transfer coefficien...

متن کامل

EVALUATION OF PRESSURE EFFECT ON HEAT TRANSFER COEFFICIENT AT THE METAL- MOLD INTERFACE FOR CASTING OF A356 AL ALLOY

Abstract: During solidification and casting in metallic molds, the heat flow is controlled by the thermal resistance at the casting-mold interface. Thus heat transfer coefficient at the metal- mold interface has a predominant effect on the rate of heat transfer. In some processes such as low pressure and die-casting, the effect of pressure on molten metal will affect the rate of heat transfer a...

متن کامل

MOLD FILLING BEHAVIOR OF DOUBLE GATING SYSTEM IN ALUMINUMLFC PROCESS

The mold-filling behavior in the casting of aluminum alloy (A413) using lost foam casting (LFC) was explored. The effects of gate numbers, type of gating and casting thickness on the filling behavior were evaluated. Although, unlike convectional casting process, the gating system showed little effect onfilling ability, casting thickness created a greater effect on the mold filling. In contrast ...

متن کامل

Effects of Replacing Fluorine with Sodium and Titanium Oxides on Continuous Casting of Steel Mold Powders Lubrication

Mold powders are used as raw materials in continuous casting of steel industry; Also they are mostly composed of aluminum, calcium, silica oxides, alkaline and earth-alkaline oxides along with carbon and fluor. Two of the most important duties of mold powders are the lubrication of the space between mold walls and steel shell, and heat transfer control between steel shell and the copper mold. F...

متن کامل

FLOW BEHAVIOR OF MOLTEN METAL IN ALUMINUM LFC PROCESS

The effects of gating system and pattern geometry on the metal flow in the lost foam casting (LFC) process have been investigated using glass covered mold and video recording system. Unlike convectional casting process, the type of the gating system showed little effect on fillability in lost foam, but pattern thickness had large effect on mold filling. The mold filling behavior seems to be con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009